Sašo Šturm

Jožef Stefan Institute, Slovenia

Electron Microscopy School, Belgrade, April 2011

High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM)

Lecture key points:

- Why are we doing HAADF-STEM?
- The reciprocity theorem of elastic electron scattering
- The origin of thermal diffuse scattering
- The electron probe
- The ronchigram
- Quantitative HAADF-STEM imaging
 - Image simulations
 - Quantitative interpretation of atomically-resolved HAADF-STEM images

TEM microscope in the begining...

- Two basic operation modes in transmission electron microscopy (TEM):
- using stationary electron beam (conventional TEM mode)
- using scanning electron probe (STEM mode)

Combined atomically-resolved structural, compositional and chemical information:

- STEM: Scanning Transmission Electron Microscope
- HAADF: High-Angle Annular Dark-Field detektor

HAADF-STEM of functional materials:

strong compositional sensitivity

Why are we doing HAADF-STEM?

V. Radmilović (2011)

HAADF-STEM of nanoparticles:

- Cu-Ni-Pt nanoparticle in carbon-based matrix
- Ru-O nanoparticles in TiO₂ based matrix

Hollow nanospheres

Why are we doing HAADF-STEM?

Combining Bright-Field (BF) and HAADF-STEM imaging:

compositionally complex nanotube

Combining Bright-Field (BF) and HAADF-STEM imaging:
Pd on perovskite substrate

Why are we doing HAADF-STEM?

Small region of polycrystalline BaTiO₃ tubes

Images were taken at SuperSTEM (Daresbury)

Combining Bright-Field (BF) and HAADF-STEM imaging:

- Atomic-scale sensitivity
- Strong chemical and structural sensitivity

Why are we doing HAADF-STEM?

Small region of polycrystalline BaTiO₃ tubes

Images were taken at SuperSTEM (Daresbury)

Combining Bright-Field (BF) and HAADF-STEM imaging:

 The interpretation of HAADF-STEM images is more straight forward than BF-STEM

The origin of thermal diffuse scattering

- Intensity of high-angle scattered electrons is related with projected average atomic number, Z
- Proper setting of the detector will collect only high-angle scattered electrons, thus increase the Z-contrast

The probe functions at optimum convergence angle

How to define best probe for imaging?

Oak ridge nationa lab

The ronchigram

How to define best probe for imaging? Make use of a ronchigram

Experimental image taken on JEM-2010F (15.4.2010)

HAADF-STEM imaging at high spatial resolution:

- Z-contrast
- Atomic-scale combined compositional and structural sensitivity

Z-contrast

Atomic-scale combined compositional and structural sensitivity

Need for qunatitative interpretation of atomicaly resolved HAADF-STEM images

HAADF-STEM image simulatons

HAADF-STEM image simulations

HAADF-STEM image simulations

Incomplete list of HAADF-STEM image simulations softwares:

- C. Koch: QSTEM (http://www.christophtkoch.com/stem/index.html)
- E.J. Kirkland: Advanced Computing in Electron Microscopy
- P. Galindo: HAADF-STEM image simulations on large scale nanostructures
- V. Grillo: STEM_CELL (http://tem.s3.infm.it/software)
- <u>http://www.hremresearch.com/</u> (commercial software)

Image matching alghoritm: Cross-correlation data cube

Quantitative HAADF-STEM

SrTiO₃ + 10 mol.%SrO

Quantitative HAADF-STEM

